La interpretación de Copenhague

|| La filosofía de la Mecánica Cuántica /8

Todos o casi todos estos científicos contribuyeron al desarrollo de la física cuántica. Einstein y Marie Curie son fácilmente reconocibles (ella es la única mujer). Heisenberg está en la tercera fila, el tercero contando desde la derecha. Bohr es el primero de la segunda fila contando desde la derecha también. Pero también están Schrödinger, Planck, el gran Lorentz, Dirac y muchos más titanes de la física del siglo XX. Es, por supuesto, el Congreso Solvay de 1927.

Además del principio de indeterminación o incertidumbre, Heisenberg añadió otro principio, el de complementariedad, que dice que aunque un fenómeno puede ser considerado desde dos puntos de vista que se excluyen mutuamente (por ejemplo, el electrón como onda y como partícula), eso no impide que cada uno por separado siga siendo válido.

Heisenberg y Bohr

A la indeterminación y la complementariedad hay que añadir otras dos nociones para completar el formalismo cuántico: la no localidad y la discontinuidad. Para terminar con la descripción de lo que se ha llamado interpretación de Copenhague, conviene resumir ahora estas cuatro características. La exposición más clara del asunto la he hallado en “Las interacciones ciencia-sociedad a la luz de la mecánica cuántica y de su interpretación”[1]en El siglo de la Física. Barcelona 1992, de Fritz Rorhlich, y aunque obliga a una cita muy extensa, creo interesante trascribirla para dar fin a la descripción de la mecánica cuántica y pasar entonces a examinar sus consecuencias y sus interpretaciones.

Características del formalismo cuántico

Fritz Rohrlich dice que en la mecánica cuántica “nos encontramos con un marco matemático y con un procedimiento de cálculo asociado, que se adecuan excelentemente a los resultados experimentales”.

Rohrlich enumera las características del formalismo de la mecánica cuántica:

1. Discontinuidad

“Algunas cantidades físicas (por ejemplo la energía de una onda magnética) están cuantizadas. Esto significa que sólo se presentan en forma de múltiplos de una cantidad indivisible mínima, un cuanto (por ejemplo de energía). Las magnitudes de estos cuantos están caracterizadas por una constante universal h, la constante de Planck”.

[El lector puede revisar ¿Ondas o partículas? y Partículas y ondas para entender qué significa exactamente esto.]

 

2. Complementariedad
“La no conmutatividad de dos operadores que representan dos observables implica que no pueden tener valores simultáneamente (es decir, no pueden tener valores concretos los dos al mismo tiempo); no pueden ser precisos (como en la física clásica). Se dice entonces que dichos observables son ‘incompatibles’. Un caso particular de par de incompatibles lo tenemos en la relación de incertidumbre propuesta por Heisenberg, que resulta de la no conmutatividad de la posición y del momento lineal. Como consecuencia de la incompatibilidad, una partícula cuántica, por ejemplo un electrón, puede comportarse como una onda (si los observables bien definidos son el espacio y el tiempo) o como una partícula (si los observables bien definidos son el momento y la energía). Este hecho es famoso y se conoce como la dualidad onda-partícula. Como se pueden observar ambos aspectos, una descripción completa de los fenómenos necesita de ambos: se complementan entre sí. Esta idea de complementarierad se convirtió en la base de la presentación de Bohr de la mecánica cuántica”

 

3. Indeterminación

“En general, la teoría sólo puede hacer interpretaciones probabilísticas. Sólo de este modo son predecibles las propiedades y la evolución futura de las partículas cuánticas. La causalidad se limita sólo a las predicciones de las amplitudes de probabilidad, y todas las demás predicciones se siguen de ahí”.

4. No localidad
“Dos partículas cuánticas producidas simultáneamente y que no interaccionan entre sí se comportan, en muchos sentidos, como si se tratara de una sóla partícula, aún después de haberse separado una distancia macroscópica. Tales correlaciones cuánticas entre partículas cuánticas distantes no violan la condición relativista de la existencia de una velocidad máxima para la propagación de señales (que no puede exceder la velocidad de la luz en el vacío)”
Son cuatro características hasta cierto punto sencillas, pero que cambian por completo la visión de la fíisca, y por tanto de la realidad. Definen lo que se llamó “la interpretacón de Copenhague” (por la influencia y tutela del físico danés Niels Bohr).

 

Continuará…


diletante-cuantica-aviso3


[Escrito por primera vez  después de 1994 y antes de 1996, como un trabajo universitario. La edición actual procede de la edición personal de 1998. No he introducido ningún cambio significativo, más allá de correcciones de estilo para hacer más claro el texto y más agradable la lectura, pero a veces he añadido textos explicativos en 2017 o 2018, en otro color]


 FILOSOFÍA DE LA FÍSICA CUÁNTICA

Introducción a la cuántica

|| La filosofía de la Mecánica Cuántica /1


Leer Más
¿Ondas o partículas?

La filosofía de la Mecánica Cuántica /2


Leer Más
Partículas y ondas

La filosofía de la Mecánica Cuántica /3


Leer Más
Primeros pasos hacia la cuántica

La filosofía de la Mecánica Cuántica /4


Leer Más
Dos interpretaciones para una sola realidad

La filosofía de la Mecánica Cuántica /5


Leer Más
El principio de indeterminación de Heisenberg

La filosofía de la Mecánica Cuántica /6


Leer Más
Heisenberg y la nueva física

|| La filosofía de la Mecánica Cuántica /7


Leer Más
La interpretación de Copenhague

|| La filosofía de la Mecánica Cuántica /8


Leer Más

EL EXPERIMENTO DE LA DOBLE RENDIJA
[Anexo a Filosofía de la Física cuántica]

Ondas

El experimento de la doble rendija /1


Leer Más
Partículas

El experimento de la doble rendija /2


Leer Más
¿Ondas y/o partículas?

El experimento de la doble rendija /3


Leer Más

ARTÍCULOS RELACIONADOS Y TEXTOS DE APOYO

Cuenta atrás para el bosón de Higgs

Leer Más
El experimento de interferencia de Thomas Young

Leer Más
El modelo atómico de la materia

Leer Más
Los quantos de Planck: átomos de energía

Leer Más
El átomo de Thomson y el de Rutherford

Leer Más

Aquí puedes ver casi todas las entradas relacionadas con la ciencia. Otras referencias científicas pueden estar en páginas dedicadas a la filosofía, el cine o cualquier otra cosa imaginable, por lo que, en tal caso, lo mejor es que uses el buscador lateral, con palabras relacionadas con el tema que te interese.

  CUADERNO DE CIENCIA

La memoria holográfica

Leer Más
Dios y la doble rendija

Leer Más
Enfermos imaginarios

Leer Más
El reloj personal

Leer Más
Cine y física cuántica

Leer Más
Velocidad y realidad

Cómo es el mundo /2


Leer Más
Ciencia, medicina, magia y superstición

Leer Más
Erwin Schrödinger (1887/1961)

Leer Más
Ciencia y mística

Leer Más
Las moscas, Hofstadter y los vampiros

Leer Más
Cuenta atrás para el bosón de Higgs

Leer Más
El efecto doppler

Leer Más
Números interesantes

Leer Más
Cuaderno de ciencia

Leer Más
La fuerza del espíritu

Leer Más
Multi-funcionalismo , de Karin Öpfel

Leer Más
Curiosidad

Leer Más
Einstein y las explicaciones demasiado convincentes

Leer Más
Chesterton contra Einstein

Leer Más
Guitton y la física cuántica

Leer Más
Homeopatía y frenología

En las fronteras de la ciencia /1


Leer Más
Preguntas cuánticas estúpidas

Leer Más

CUADERNO DE BIOLOGÍA

Algo de Darwin

Leer Más
Dawkins: genes, memes y determinismo

Leer Más
Autobiografía de Charles Darwin

Leer Más
Darwin y el dios omnipotente

Leer Más
Un poco más sobre el respeto en Darwin

Leer Más
De Vries y Darwin, mutación y selección natural como origen de las especies

Leer Más
Darwin y la ceguera

Leer Más
Otros mundos: Uexkhull y el Zhuang Zi

Leer Más
Uexkull contra Darwin

Leer Más
Todo explicado, nada explicado

Leer Más
Lo que sí está en los genes

Leer Más

BREVÍSIMA INTRODUCCIÓN A LA BIOLOGÍA MOSCA Y CAJA

1. Invitación a la biología

Leer Más
2. Teorías evolutivas de las moscas y las cajas

Leer Más
3. La trágica historia de la Bistun Betularia

Leer Más
4. La teoría de la evolución de Lamarck

Leer Más
5. La evolución de las jirafas
Brevísima introducción a la biología

Leer Más

SOBRE “LA ESTRUCTURA DE LA EVOLUCIÓN”, DE STEPHEN JAY GOULD
(Artículos acerca de la evolución)

Los cortes de la navaja de Occam

Leer Más
Mi teoría de la evolución

Leer Más
Las teorías superadas

Leer Más
La incompletitud del registro fósil

Leer Más

 

Share

References   [ + ]

1. en El siglo de la Física. Barcelona 1992

Heisenberg y la nueva física

|| La filosofía de la Mecánica Cuántica /7

Cuando Heisenberg formuló en 1927 su principio de indeterminación o incertidumbre, según el cual no es posible medir de manera simultánea la posición y el momento lineal (masa, tiempo, velocidad) de un electrón, la primera conclusión a la que llegaron muchos físicos fue que la teoría cuántica era una teoría estadística, en el sentido de que a partir de datos exactos solo se pueden extraer conclusiones estadísticas:

“Ante la íntima conexión existente entre el carácter estadístico de la teoría cuántica y la imprecisión de cualquier percepción, se podría sugerir que detrás del universo estadístico de la percepción subyace oculto un mundo “real” que es regido por la causalidad”.

Esta sería la conclusión del sentido común: no podemos conocer el mundo de las partículas subatómicas y las leyes deterministas que lo rigen, pero ese mundo existe, a pesar de que a nosotros solo nos queda hacer cálculos estadísticos que nos indican probabilidades.

Sin embargo, no era esa la opinión de Heisenberg:

Estas especulaciones nos parecen -y ponemos en ello especial énfasis- inútiles y carentes de significado, porque la física debe limitarse a la descripción formal de las relaciones entre percepciones”[1] Silvio Bergia, Silvio “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona, 1992) .

Para Heisenberg, la noción de causalidad y la de una física determinista quedaba obsoleta, no exactamente porque hubiera sido refutada, sino porque no era tarea de los científicos el saber cómo es la realidad, sino tan solo describir la realidad que podemos observar y someter a experimentación. “Esto es lo que vemos, ¿qué hay debajo?” La respuesta es: “Ni lo sé ni me interesa”. Coincide Heisenberg, quizá de manera inesperada, con William James y su filosofía del pragmatismo, muy de moda en esa época, aunque tal vez no fuera conocida por el propio Heisenberg. También anticipa filosofías como el constructivismo de Paul Watzlawicz.

Mirando hacia atrás podemos encontrar precursores a esta visión en la célebre frase de Isaac Newton: “Hypotheses non fingo” (“No propongo hipótesis”) que se supone que dijo cuando se le pidió que no sólo describiese la gravedad, sino que la explicase. De todos modos, a pesar de la opinión popular, hay que tener en cuenta que lo que dijo Newton fue:

“Todavía no he podido descubrir la razón de las propiedades de la gravedad en los fenómenos, y no finjo las hipótesis. Porque lo que no se deduce de los fenómenos debe llamarse una hipótesis; y las hipótesis, ya sean metafísicas o físicas, o basadas en cualidades ocultas, o mecánicas, no tienen cabida en la filosofía experimental. En esta filosofía, las proposiciones particulares se infieren de los fenómenos y luego se vuelven generales por inducción”.

Es decir, Newton dijo que “todavía” no había descubierto esas causas, no que renunciara a encontrarlas. Y también que cuando las hipótesis se basan en cualidades ocultas no observables de ninguna manera (aunque sea por sus efectos), son solo un brindis al sol, una apuesta al viento, sin más. Otra cosa son las hipótesis que tienen en cuenta observaciones o que proponen situaciones contrastables.

Sin embargo, resulta difícil concebir la investigación científica sin presuponer  que la naturaleza se ajusta a nuestras explicaciones, o mediante la formulación de hipótesis, que, eso sí, deben poder ser puestas a prueba de algún modo para que puedan ser consideradas una aportación científica. Como veremos, los científicos, incluso aceptando la interpretación de Copenhague y el principio de incertidumbre de Heisenberg, no han dejado de buscar posibles explicaciones a la cuántica, desde los universos paralelos a las teorías de las supercuerdas, que, por desgracia, se ajustan a esas despreciadas hipótesis de las que habla Newton, pues no proponen ninguna manera de ser puestas a prueba.

Otra de las posibles influencias en el dictum de Heisenberg es, por supuesto, Kant y su noumenos que queda allá oculto, más allá de los fenómenos que aparecen ante nuestros a priori del espacio y el tiempo. También hay ecos de aquel célebre prólogo de Ossiander al De Revolutionibus de Copérnico, en el que se decía que toda la teoría heliocéntrica lo único que intentaba era “salvar los fenómnos”, pero que no afirmaba que la realidad real fuera así. Naturalmente, en el caso de Ossiander y Copérnico se escondía el deseo de no ser acusados de herejes. Otra influencia, mucho más lejana, sería la de la escuela escéptica.

Continuará…


diletante-cuantica-aviso3


[Escrito por primera vez  después de 1994 y antes de 1996, como un trabajo universitario. La edición actual procede de la edición personal de 1998. No he introducido ningún cambio significativo, más allá de correcciones de estilo para hacer más claro el texto y más agradable la lectura]


 FILOSOFÍA DE LA FÍSICA CUÁNTICA

Introducción a la cuántica

|| La filosofía de la Mecánica Cuántica /1


Leer Más
¿Ondas o partículas?

La filosofía de la Mecánica Cuántica /2


Leer Más
Partículas y ondas

La filosofía de la Mecánica Cuántica /3


Leer Más
Primeros pasos hacia la cuántica

La filosofía de la Mecánica Cuántica /4


Leer Más
Dos interpretaciones para una sola realidad

La filosofía de la Mecánica Cuántica /5


Leer Más
El principio de indeterminación de Heisenberg

La filosofía de la Mecánica Cuántica /6


Leer Más
Heisenberg y la nueva física

|| La filosofía de la Mecánica Cuántica /7


Leer Más
La interpretación de Copenhague

|| La filosofía de la Mecánica Cuántica /8


Leer Más

EL EXPERIMENTO DE LA DOBLE RENDIJA
[Anexo a Filosofía de la Física cuántica]

Ondas

El experimento de la doble rendija /1


Leer Más
Partículas

El experimento de la doble rendija /2


Leer Más
¿Ondas y/o partículas?

El experimento de la doble rendija /3


Leer Más

ARTÍCULOS RELACIONADOS Y TEXTOS DE APOYO

Cuenta atrás para el bosón de Higgs

Leer Más
El experimento de interferencia de Thomas Young

Leer Más
El modelo atómico de la materia

Leer Más
Los quantos de Planck: átomos de energía

Leer Más
El átomo de Thomson y el de Rutherford

Leer Más

Aquí puedes ver casi todas las entradas relacionadas con la ciencia. Otras referencias científicas pueden estar en páginas dedicadas a la filosofía, el cine o cualquier otra cosa imaginable, por lo que, en tal caso, lo mejor es que uses el buscador lateral, con palabras relacionadas con el tema que te interese.

  CUADERNO DE CIENCIA

La memoria holográfica

Leer Más
Dios y la doble rendija

Leer Más
Enfermos imaginarios

Leer Más
El reloj personal

Leer Más
Cine y física cuántica

Leer Más
Velocidad y realidad

Cómo es el mundo /2


Leer Más
Ciencia, medicina, magia y superstición

Leer Más
Erwin Schrödinger (1887/1961)

Leer Más
Ciencia y mística

Leer Más
Las moscas, Hofstadter y los vampiros

Leer Más
Cuenta atrás para el bosón de Higgs

Leer Más
El efecto doppler

Leer Más
Números interesantes

Leer Más
Cuaderno de ciencia

Leer Más
La fuerza del espíritu

Leer Más
Multi-funcionalismo , de Karin Öpfel

Leer Más
Curiosidad

Leer Más
Einstein y las explicaciones demasiado convincentes

Leer Más
Chesterton contra Einstein

Leer Más
Guitton y la física cuántica

Leer Más
Homeopatía y frenología

En las fronteras de la ciencia /1


Leer Más
Preguntas cuánticas estúpidas

Leer Más

CUADERNO DE BIOLOGÍA

Algo de Darwin

Leer Más
Dawkins: genes, memes y determinismo

Leer Más
Autobiografía de Charles Darwin

Leer Más
Darwin y el dios omnipotente

Leer Más
Un poco más sobre el respeto en Darwin

Leer Más
De Vries y Darwin, mutación y selección natural como origen de las especies

Leer Más
Darwin y la ceguera

Leer Más
Otros mundos: Uexkhull y el Zhuang Zi

Leer Más
Uexkull contra Darwin

Leer Más
Todo explicado, nada explicado

Leer Más
Lo que sí está en los genes

Leer Más

BREVÍSIMA INTRODUCCIÓN A LA BIOLOGÍA MOSCA Y CAJA

1. Invitación a la biología

Leer Más
2. Teorías evolutivas de las moscas y las cajas

Leer Más
3. La trágica historia de la Bistun Betularia

Leer Más
4. La teoría de la evolución de Lamarck

Leer Más
5. La evolución de las jirafas
Brevísima introducción a la biología

Leer Más

SOBRE “LA ESTRUCTURA DE LA EVOLUCIÓN”, DE STEPHEN JAY GOULD
(Artículos acerca de la evolución)

Los cortes de la navaja de Occam

Leer Más
Mi teoría de la evolución

Leer Más
Las teorías superadas

Leer Más
La incompletitud del registro fósil

Leer Más

Share

References   [ + ]

1. Silvio Bergia, Silvio “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona, 1992)

El principio de indeterminación de Heisenberg

La filosofía de la Mecánica Cuántica /6

Una vez que quedó neutralizada (o asimilada) la interpretación ondulatoria de Schrödinger, Heisenberg señaló que en el mundo cuántico se puede medir la posición y se puede medir el momento (masa, tiempo, velocidad) de un electrón, pero que no se pueden medir ambas cosas a la vez.

Lo anterior significa que la noción de trayectoria no tiene sentido en el mundo subatómico, y que, por lo tanto, los fenómenos cuánticos no se pueden visualizar ni representar como los de los cuerpos macroscópicos, en un sistema de coordenadas espaciotemporales. Eso llevó a Heisenberg a formular en 1925 o 1927 su célebre Principio de incertidumbre o indeterminación: cualquier intento de obtener mayor precisión al examinar una de estas magnitudes “tiene como resultado hacer más indefinido el valor de la otra”.

En definitiva, en la física cuántica no se puede determinar simultáneamente y con una precisión arbitraria pares de variables físicas como la posición y el momento lineal  de un objeto dado, al contrario de lo que sucede en la física macroscópica, donde podemos observar dónde está un objeto, cuál es su velocidad, dónde estará dentro de un instante y donde estaba hace un instante, es decir su trayectoria en el espacio y en el tiempo. Este es el conocido principio de incertidumbre o indeterminación de Heisnberg.

 

Continuará…


diletante-cuantica-aviso3


[Escrito por primera vez  después de 1994 y antes de 1996, como un trabajo universitario. La edición actual procede de la edición personal de 1998. No he introducido ningún cambio significativo, más allá de correcciones de estilo para hacer más claro el texto y más agradable la lectura]


 FILOSOFÍA DE LA FÍSICA CUÁNTICA

Introducción a la cuántica

|| La filosofía de la Mecánica Cuántica /1


Leer Más
¿Ondas o partículas?

La filosofía de la Mecánica Cuántica /2


Leer Más
Partículas y ondas

La filosofía de la Mecánica Cuántica /3


Leer Más
Primeros pasos hacia la cuántica

La filosofía de la Mecánica Cuántica /4


Leer Más
Dos interpretaciones para una sola realidad

La filosofía de la Mecánica Cuántica /5


Leer Más
El principio de indeterminación de Heisenberg

La filosofía de la Mecánica Cuántica /6


Leer Más
Heisenberg y la nueva física

|| La filosofía de la Mecánica Cuántica /7


Leer Más
La interpretación de Copenhague

|| La filosofía de la Mecánica Cuántica /8


Leer Más

EL EXPERIMENTO DE LA DOBLE RENDIJA
[Anexo a Filosofía de la Física cuántica]

Ondas

El experimento de la doble rendija /1


Leer Más
Partículas

El experimento de la doble rendija /2


Leer Más
¿Ondas y/o partículas?

El experimento de la doble rendija /3


Leer Más

ARTÍCULOS RELACIONADOS Y TEXTOS DE APOYO

Cuenta atrás para el bosón de Higgs

Leer Más
El experimento de interferencia de Thomas Young

Leer Más
El modelo atómico de la materia

Leer Más
Los quantos de Planck: átomos de energía

Leer Más
El átomo de Thomson y el de Rutherford

Leer Más

Aquí puedes ver casi todas las entradas relacionadas con la ciencia. Otras referencias científicas pueden estar en páginas dedicadas a la filosofía, el cine o cualquier otra cosa imaginable, por lo que, en tal caso, lo mejor es que uses el buscador lateral, con palabras relacionadas con el tema que te interese.

  CUADERNO DE CIENCIA

La memoria holográfica

Leer Más
Dios y la doble rendija

Leer Más
Enfermos imaginarios

Leer Más
El reloj personal

Leer Más
Cine y física cuántica

Leer Más
Velocidad y realidad

Cómo es el mundo /2


Leer Más
Ciencia, medicina, magia y superstición

Leer Más
Erwin Schrödinger (1887/1961)

Leer Más
Ciencia y mística

Leer Más
Las moscas, Hofstadter y los vampiros

Leer Más
Cuenta atrás para el bosón de Higgs

Leer Más
El efecto doppler

Leer Más
Números interesantes

Leer Más
Cuaderno de ciencia

Leer Más
La fuerza del espíritu

Leer Más
Multi-funcionalismo , de Karin Öpfel

Leer Más
Curiosidad

Leer Más
Einstein y las explicaciones demasiado convincentes

Leer Más
Chesterton contra Einstein

Leer Más
Guitton y la física cuántica

Leer Más
Homeopatía y frenología

En las fronteras de la ciencia /1


Leer Más
Preguntas cuánticas estúpidas

Leer Más

CUADERNO DE BIOLOGÍA

Algo de Darwin

Leer Más
Dawkins: genes, memes y determinismo

Leer Más
Autobiografía de Charles Darwin

Leer Más
Darwin y el dios omnipotente

Leer Más
Un poco más sobre el respeto en Darwin

Leer Más
De Vries y Darwin, mutación y selección natural como origen de las especies

Leer Más
Darwin y la ceguera

Leer Más
Otros mundos: Uexkhull y el Zhuang Zi

Leer Más
Uexkull contra Darwin

Leer Más
Todo explicado, nada explicado

Leer Más
Lo que sí está en los genes

Leer Más

BREVÍSIMA INTRODUCCIÓN A LA BIOLOGÍA MOSCA Y CAJA

1. Invitación a la biología

Leer Más
2. Teorías evolutivas de las moscas y las cajas

Leer Más
3. La trágica historia de la Bistun Betularia

Leer Más
4. La teoría de la evolución de Lamarck

Leer Más
5. La evolución de las jirafas
Brevísima introducción a la biología

Leer Más

SOBRE “LA ESTRUCTURA DE LA EVOLUCIÓN”, DE STEPHEN JAY GOULD
(Artículos acerca de la evolución)

Los cortes de la navaja de Occam

Leer Más
Mi teoría de la evolución

Leer Más
Las teorías superadas

Leer Más
La incompletitud del registro fósil

Leer Más

diletante-cuantica-lateral2

Share

Dos interpretaciones para una sola realidad

La filosofía de la Mecánica Cuántica /5

Cuando los físicos se dieron cuenta de que el comportamiento de los fotones podía ser descrito como el de una onda o como el de una partícula, es decir lo que se conoce como doble naturaleza o dualidad onda-partícula, se formularon dos teorías capaces de explicar lo que ya se llamaban fenómenos cuánticos: la teoría de matrices de Heisenberg (corpuscular) y la mecánica ondulatoria de Schrödinger.

Erwin Schrödinger

La teoría de Heisenberg renunciaba “a una descripción clásica en el espacio y en el tiempo… y desafiaba cualquier interpretación visualizable… enfantizando el elemento discontinuidad”. Por el contrario, la teoría ondulatoria de Schrödinger parecía más fácilmente visualizable a la manera tradicional y ponía su acento en la continuidad [1] Cita de Max Jammer en Silvio Bergia: “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona 1992)

Los autores de cada una de las dos teorías cuánticas miraban con recelo a su rival. Así, Heisenberg decía: “Cuanto más sopeso la parte física de la teoría de Schrödinger, tanto más horrorosa me resulta[2]Silvio Bergia: “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona 1992)”.

Por su parte, Schrödinger respondía:

“Me desalentó, por no decir que fui repelido, por lo que me pareció un método más bien difícil de álgebra trascendental, que desafiaba cualquier visualización”[3]Silvio Bergia: “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona 1992).

Werner Heisenberg y Niels Bohr

El problema es que las dos teorías eran formalmente correctas, y sin embargo parecían incompatibles. Para intentar solucionar el problema, Schrödinger fue invitado por Bohr con objeto de comparar sus distintos puntos de vista. Sorprendentemente, se llegó a la conclusión de que, a fin de cuentas, ambas teorías eran equivalentes. Con ello se asentó la naturaleza dual onda-partícula de los fenómenos cuánticos. Otra consecuencia de gran importancia, fue “la derrota y claudicación sin condiciones de Schrödinger en los aspectos interpretativos”.

Continuará…


diletante-cuantica-aviso3

[Escrito por primera vez  después de 1994 y antes de 1996, como un trabajo universitario. La edición actual procede de la edición personal de 1998. No he introducido ningún cambio, más allá de correcciones de estilo para hacer más claro el texto y más agradable la lectura]

 FILOSOFÍA DE LA FÍSICA CUÁNTICA

Introducción a la cuántica

|| La filosofía de la Mecánica Cuántica /1


Leer Más
¿Ondas o partículas?

La filosofía de la Mecánica Cuántica /2


Leer Más
Partículas y ondas

La filosofía de la Mecánica Cuántica /3


Leer Más
Primeros pasos hacia la cuántica

La filosofía de la Mecánica Cuántica /4


Leer Más
Dos interpretaciones para una sola realidad

La filosofía de la Mecánica Cuántica /5


Leer Más
El principio de indeterminación de Heisenberg

La filosofía de la Mecánica Cuántica /6


Leer Más
Heisenberg y la nueva física

|| La filosofía de la Mecánica Cuántica /7


Leer Más
La interpretación de Copenhague

|| La filosofía de la Mecánica Cuántica /8


Leer Más

EL EXPERIMENTO DE LA DOBLE RENDIJA
[Anexo a Filosofía de la Física cuántica]

Ondas

El experimento de la doble rendija /1


Leer Más
Partículas

El experimento de la doble rendija /2


Leer Más
¿Ondas y/o partículas?

El experimento de la doble rendija /3


Leer Más

ARTÍCULOS RELACIONADOS Y TEXTOS DE APOYO

Cuenta atrás para el bosón de Higgs

Leer Más
El experimento de interferencia de Thomas Young

Leer Más
El modelo atómico de la materia

Leer Más
Los quantos de Planck: átomos de energía

Leer Más
El átomo de Thomson y el de Rutherford

Leer Más

Aquí puedes ver casi todas las entradas relacionadas con la ciencia. Otras referencias científicas pueden estar en páginas dedicadas a la filosofía, el cine o cualquier otra cosa imaginable, por lo que, en tal caso, lo mejor es que uses el buscador lateral, con palabras relacionadas con el tema que te interese.

  CUADERNO DE CIENCIA

La memoria holográfica

Leer Más
Dios y la doble rendija

Leer Más
Enfermos imaginarios

Leer Más
El reloj personal

Leer Más
Cine y física cuántica

Leer Más
Velocidad y realidad

Cómo es el mundo /2


Leer Más
Ciencia, medicina, magia y superstición

Leer Más
Erwin Schrödinger (1887/1961)

Leer Más
Ciencia y mística

Leer Más
Las moscas, Hofstadter y los vampiros

Leer Más
Cuenta atrás para el bosón de Higgs

Leer Más
El efecto doppler

Leer Más
Números interesantes

Leer Más
Cuaderno de ciencia

Leer Más
La fuerza del espíritu

Leer Más
Multi-funcionalismo , de Karin Öpfel

Leer Más
Curiosidad

Leer Más
Einstein y las explicaciones demasiado convincentes

Leer Más
Chesterton contra Einstein

Leer Más
Guitton y la física cuántica

Leer Más
Homeopatía y frenología

En las fronteras de la ciencia /1


Leer Más
Preguntas cuánticas estúpidas

Leer Más

CUADERNO DE BIOLOGÍA

Algo de Darwin

Leer Más
Dawkins: genes, memes y determinismo

Leer Más
Autobiografía de Charles Darwin

Leer Más
Darwin y el dios omnipotente

Leer Más
Un poco más sobre el respeto en Darwin

Leer Más
De Vries y Darwin, mutación y selección natural como origen de las especies

Leer Más
Darwin y la ceguera

Leer Más
Otros mundos: Uexkhull y el Zhuang Zi

Leer Más
Uexkull contra Darwin

Leer Más
Todo explicado, nada explicado

Leer Más
Lo que sí está en los genes

Leer Más

BREVÍSIMA INTRODUCCIÓN A LA BIOLOGÍA MOSCA Y CAJA

1. Invitación a la biología

Leer Más
2. Teorías evolutivas de las moscas y las cajas

Leer Más
3. La trágica historia de la Bistun Betularia

Leer Más
4. La teoría de la evolución de Lamarck

Leer Más
5. La evolución de las jirafas
Brevísima introducción a la biología

Leer Más

SOBRE “LA ESTRUCTURA DE LA EVOLUCIÓN”, DE STEPHEN JAY GOULD
(Artículos acerca de la evolución)

Los cortes de la navaja de Occam

Leer Más
Mi teoría de la evolución

Leer Más
Las teorías superadas

Leer Más
La incompletitud del registro fósil

Leer Más

diletante-cuantica-lateral2

Share

References   [ + ]

1. Cita de Max Jammer en Silvio Bergia: “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona 1992)
2, 3. Silvio Bergia: “Desarrollo conceptual de la teoría cuántica” (en El siglo de la Física. Barcelona 1992)

¿Ondas y/o partículas?

El experimento de la doble rendija /3

Hemos visto en Ondas y en Partículas cómo se comportan las ondas y las partículas y hemos descubierto también que los fotones, a pesar de ser partículas que pueden ser lanzadas de una en una, en el experimiento de la doble ranura se comportan como ondas.

Pues bien, puesto que los electrones son unidades enteras, si lanzamos un electrón, hallaremos un impacto único en el detector y lo lógico sería pensar que o bien el electrón ha pasado por el agujero 1 o bien ha pasado por el agujero 2. Si esto fuera así, la suma de impactos de los electrones que han pasado por el agujero y los que han pasado por el agujero 2, sería la suma de ambas contribuciones y veríamos dos bandas paralelas en la placa de llegada, causadas por la llegada de electrones que atraviesan la ranura 1 y por los que atraviesan la ranura 2. Pero ya hemos visto que no sucede así y que lo que se forma es un patrón de interferencia con más de dos bandas paralelas, como sucede con las ondas.

En consecuencia, habrá que comprobar, dice Feynman, si es cierto que los electrones pasan por un agujero o por el otro, o si dan la vuelta por ambos agujeros, o  si se parten por la mitad u otra cosa.

Así que mantenemos abiertos los dos agujeros y observamos los electrones, iluminándolos con una luz intensa. La luz es dispersada por los electrones, los que nos permite verlos al pasar por los agujeros. Efectivamente, vemos que pasan enteros por el agujero 1 o por el 2.

Pues bien, y aquí viene lo más importante, si contamos los electrones que pasan por el agujero 1 y los que pasan por el 2 con la luz encendida, obtenemos que los electrones que han pasado por el agujero 1 dan como resultado la curva N1, mientras que los que han pasado por el agujero 2 dan como resultado la curva N2. Es decir, las curvas que obtenemos por cada agujero cuando ambos están abiertos y la luz encendida, son idénticas a las que obtenemos cuando cerramos primero un agujero y luego el otro con la luz apagada.

Sería una fuerte tentación aplicar ahora el sentido común y aventurar que la suma de las curvas obtenidas dará como resultado una curva similar a la que se obtiene con las balas (la curva N12), pero ya hemos visto, cuando hicimos el experimento con la luz apagada, que la curva resultante cuando los dos agujeros están abiertos es idéntica a la de las ondas (L12), que no es la suma de las curvas obtenidas cuando se abre uno u otro agujero.

Pues bien, miramos la curva resultante cuando hacemos el experimento con la luz encendida, descubrimos que se han cumplido por una vez las predicciones del sentido común. La curva registrada en el detector sí es la suma de las curvas de cada agujero.

Naturalmente esta es una victoria pírrica del sentido común, porque significa que el resultado es distinto si la luz está encendida o apagada. De este modo se muestra lo que se ha llamado la influencia del aparato de medida o de nuestra elección en el diseño del experimento, y cómo el mundo macroscópico determina nuestra observación de lo microscópico. Esto conduce al principio de incertidumbre de Heisenberg, que, formulado, dice Feynman, de acuerdo con nuestro experimento afirma, que: “Es imposible construir un aparato que pueda determinar el agujero a través del cual pasa un electrón sin al mismo tiempo perturbar el electrón de forma suficiente como para destruir el modelo de interferencias”.

La conclusión es que si poseemos un aparato capaz de indicarnos el agujero por el que pasa un electrón, podemos decir que pasa por un agujero o por el otro. Pero si no poseemos tal aparato, no podemos decir que pasa por un agujero o por el otro. Es más no se puede predecir por qué agujero pasará un electrón, incluso con la luz encendida: “Sólo sé -dice Feynman- que cada vez que miro pasa por uno de los dos agujeros, pero no hay manera de anticipar por cual de los dos va a pasar”. El futuro es impredecible, incluso aunque conozcamos perfectamente las circunstancias iniciales. Dice Ridley:

“Mientras que la ruta de una bola de billar golpeada por un taco es determinada precisamente por la forma en que fue golpeada… con los electrones no hay certidumbre sobre lo que va a ocurrir, porque los electrones guardan un grado de libertad de movimiento que parece ser inherente a su naturaleza”.

Así, concluye Gribbin:

“Cuanto más se conoce sobre el aspecto ondulatorio de la realidad, menos se conoce sobre su faceta corpuscular y viceversa. Los experimentos diseñados para detectar ondas siempre detectan ondas. Ningún experimento muestra al electrón comportándose simultáneamente como una onda y como una partícula” .

 


NOTA: para la descripción del experimento he utilizado varios libros, fundamentalmente el de Feynamn, utilizando a veces frases, otras palabras y otras conceptos que expresado de otra manera. Para evitar una saturación de paréntesis, no he hecho referencia en el texto a estos libros, que son los siguientes, tal como se recogen en la Bibliografía: Feynman, Trefil (1983), Ridley, Davies/Brown, Davies y Gribbin. Es muy posible que en mi explicación haya algún error, incluso algún error grave, por lo que recomiendo al lector que consulte la deslumbrante explicación del experimento de la doble ranura que da Jim Al-Khalili: Double Silt Experiment o la extraordinaria explicación de Armando Martínez Téllez en Ondas de materia.

Continuará…


diletante-cuantica-aviso3

[Escrito por primera vez  después de 1994 y antes de 1996, como un trabajo universitario. La edición actual procede de la edición personal de 1998. No he introducido ningún cambio, más allá de correcciones de estilo para hacer más claro el texto y más agradable la lectura]

 FILOSOFÍA DE LA FÍSICA CUÁNTICA

Introducción a la cuántica

|| La filosofía de la Mecánica Cuántica /1


Leer Más
¿Ondas o partículas?

La filosofía de la Mecánica Cuántica /2


Leer Más
Partículas y ondas

La filosofía de la Mecánica Cuántica /3


Leer Más
Primeros pasos hacia la cuántica

La filosofía de la Mecánica Cuántica /4


Leer Más
Dos interpretaciones para una sola realidad

La filosofía de la Mecánica Cuántica /5


Leer Más
El principio de indeterminación de Heisenberg

La filosofía de la Mecánica Cuántica /6


Leer Más
Heisenberg y la nueva física

|| La filosofía de la Mecánica Cuántica /7


Leer Más
La interpretación de Copenhague

|| La filosofía de la Mecánica Cuántica /8


Leer Más

EL EXPERIMENTO DE LA DOBLE RENDIJA
[Anexo a Filosofía de la Física cuántica]

Ondas

El experimento de la doble rendija /1


Leer Más
Partículas

El experimento de la doble rendija /2


Leer Más
¿Ondas y/o partículas?

El experimento de la doble rendija /3


Leer Más

ARTÍCULOS RELACIONADOS Y TEXTOS DE APOYO

Cuenta atrás para el bosón de Higgs

Leer Más
El experimento de interferencia de Thomas Young

Leer Más
El modelo atómico de la materia

Leer Más
Los quantos de Planck: átomos de energía

Leer Más
El átomo de Thomson y el de Rutherford

Leer Más

Aquí puedes ver casi todas las entradas relacionadas con la ciencia. Otras referencias científicas pueden estar en páginas dedicadas a la filosofía, el cine o cualquier otra cosa imaginable, por lo que, en tal caso, lo mejor es que uses el buscador lateral, con palabras relacionadas con el tema que te interese.

  CUADERNO DE CIENCIA

La memoria holográfica

Leer Más
Dios y la doble rendija

Leer Más
Enfermos imaginarios

Leer Más
El reloj personal

Leer Más
Cine y física cuántica

Leer Más
Velocidad y realidad

Cómo es el mundo /2


Leer Más
Ciencia, medicina, magia y superstición

Leer Más
Erwin Schrödinger (1887/1961)

Leer Más
Ciencia y mística

Leer Más
Las moscas, Hofstadter y los vampiros

Leer Más
Cuenta atrás para el bosón de Higgs

Leer Más
El efecto doppler

Leer Más
Números interesantes

Leer Más
Cuaderno de ciencia

Leer Más
La fuerza del espíritu

Leer Más
Multi-funcionalismo , de Karin Öpfel

Leer Más
Curiosidad

Leer Más
Einstein y las explicaciones demasiado convincentes

Leer Más
Chesterton contra Einstein

Leer Más
Guitton y la física cuántica

Leer Más
Homeopatía y frenología

En las fronteras de la ciencia /1


Leer Más
Preguntas cuánticas estúpidas

Leer Más

CUADERNO DE BIOLOGÍA

Algo de Darwin

Leer Más
Dawkins: genes, memes y determinismo

Leer Más
Autobiografía de Charles Darwin

Leer Más
Darwin y el dios omnipotente

Leer Más
Un poco más sobre el respeto en Darwin

Leer Más
De Vries y Darwin, mutación y selección natural como origen de las especies

Leer Más
Darwin y la ceguera

Leer Más
Otros mundos: Uexkhull y el Zhuang Zi

Leer Más
Uexkull contra Darwin

Leer Más
Todo explicado, nada explicado

Leer Más
Lo que sí está en los genes

Leer Más

Share